
IXP Manager Workshop

V4 Deep Dive

Barry	O’Donovan	&	Nick	Hilliard
27th Euro-IX	Forum

Berlin,	Germany	– October	25th 2015

Introduction / House Keeping / Agenda

What	do	you	want	to	cover	here?
Suggestions	/	prepared	stuff:
– Current	wish	lists	/	plans
– A	deep	look	at	IXP	Manager	V4

• My	toolstack for	those	interested

– Long	term	goal	– funding,	sponsorship,	etc.
– Some	practical	scripting

Current	Wish	Lists	/	
Plans

Current Wish Lists / Plans (and WIP)

Helpdesk	Integration
L2	ACLs
Advancing	P2P	functionality
Reseller	ports	via	p-tag
Patch	panel	management
Intelligent	Provisioning
– Port	configuration	templates	and	automatic	configuration

L2 ACLs

Dynamic	port	security	just	does	not	work in	an	IXP
– Most	of	us	have	already	moved	to	static	L2	ACLs

Need	this	functionality	supported	in	IXP	Manager:
– Prevent	driver	error	/	PEBKAC
– All	customers	to	update	L2ACLs	->	no	more	2AM	phone	calls

Usual	constraints	exist:
– Security
– Switch	vendor	agnostic	with	reference	implementation(s)
– Some	knobs	and	dials

Advancing P2P Functionality

Currently	P2P	functionality	is	via	RRDs
– This	limits	feature	development	for	anything	but	simply	p2p	graphs

Evaluating	OpenTSDB and	Graphite/Carbon/Whisper
– Whisper	is	like	RRD	in	that	it	is	a	fixed	size	database
– However,	OpenTSDB is	much	more	complex	and	is	distributed

Disk	IO	is	an	issue	– but	not	insurmountable
With	a	more	database	like	backend,	we	can	present	more	
interesting	details	to	our	customers:	top	n	peers,	burstiest peers,	
presentation	of	the	data	can	become	a	lot	more	user	friendly,	…	

Reseller Ports via p-tag

IXP	Manager	supports	the	fan-out	port	model	for	resellers	as	is
New	equipment	at	INEX	allows	the	p-tag	model
This	breaks	a	lot	of	things:
– Port	/	traffic	graphs	via	mrtg /	snmp
– MAC	address	learning	for	p2p	graphs
– We	have	two	members	where	we	have	no	visibility	L

L2ACLs	+	advances	in	P2P	/	sflow collection	should	fix	all	this	J

Patch Panel Management

Currently	we	manage	~25	data	centre patch	panels	via	wiki	L
Have	hoped	to	implement	this	in	IXP	Manager	for	~7	years	L
A	number	of	false	starts.	Why?
– We’ve	been	completely	over	thinking	this	with	wiz-bang	features
– We	just	need	the	wiki	equivlent for	crying	out	loud!
– No	fancy	graphing,	no	managing	internal	interrack panels…

Patch Panel Management

Patch	Panel	Management	to:
– Record	patch	panel	reference	and	media	type,	number	of	ports
– On	a	per	port	basis,	assign	to	a	customer
– Record	the	data	centre assigned	ID
– Connection	(and	disconnection)	date	
– Optionally	assign	to	a	switch	port

• Need	to	manage	customer	port	moves	as	a	process	now!
– Or	optionally	assign	to	customer	co-located	equipment

No	more	bike-shedding	this!	(ourselves	included!)

Intelligent Provisioning

An	often	requested	feature	– even	internally	at	INEX
Create	a	provisioning	flow	for	common	tasks	such	as:
– Joining	the	exchange	(we	still	use	a	Word	document,	yuck!	L)
– Provisioning	a	port	->	very	manual

Intelligent Provisioning

Provisioning	a	port	->	very	manual
– Assign	port
– Assign	patch	panel	port	and	send	cross	connect	details
– Configure	port	(quarantine)
– Confirm	cross	connect	is	in	place	and	record	ID
– Test	port	and	ensure	speed	/	duplex	are	matched
– Quarantine	port	(check	traffic,	check	BGP	routes	advertised)
– Put	port	live	in	production	peering	LAN
– Setup	route	collector,	route	server	and	AS112	sessions
– Send	announcement

Intelligent Provisioning

Provisioning	a	port	->	very	manual
– Assign	port
– Assign	patch	panel	port	and	send	cross	connect	details
– Configure	port	(quarantine)
– Confirm	cross	connect	is	in	place	and	record	ID
– Test	port	and	ensure	speed	/	duplex	are	matched
– Quarantine	port	(check	traffic,	check	BGP	routes	advertised)
– Put	port	live	in	production	peering	LAN
– Setup	route	collector,	route	server	and	AS112	sessions
– Send	announcement

Intelligent Provisioning

Provisioning	a	port	->	very	manual
– Assign	port	and patch	panel	port	and	send	cross	connect	details
– Configure	port	(quarantine)
– Confirm	cross	connect	is	in	place	and	record	ID
– Test	port	and	ensure	speed	/	duplex	are	matched
– Quarantine	port	(check	traffic,	check	BGP	routes	advertised)
– Put	port	live	in	production	peering	LAN
– Setup	route	collector,	route	server	and	AS112	sessions
– Send	announcement

Intelligent Provisioning

So,	how	do	we	design	a	provisioning	system	for	every	IXP?
Carefully.	Intelligently.	Dynamically.
Each	step	has	common	attributes:
– Action	pending	customer	or	IXP
– Test	to	determine	if	step	is	complete	correctly	/	incorrectly
– Action	to	take	on	completion?
– Messaging
– Advance	to	next	step

Create	a	framework	using	contracts	to	build	up	a	process	with	steps

Intelligent Provisioning
Port Configuration Templates

Standardised port	configurations	at	(obviously)	essential	at	an	IXP
INEX	performed	a	forklift	upgrade	from	Brocade	to	Extreme	recently
Used	IXP	Manager’s	database	to	configure	all	ports	on	new	switches
– Time	efficient,	no	operator	errors,	ensured	standard	configs without	missing	

elements

Could	be	easily	integrated	into	IXP	Manager	for	copy	and	paste,	but:
– Would	prefer	it	to	actually:	shutdown	port	+	wipe	+	configure	+	enable	again
– Would	also	like	it	to	validate	RANCID/Oxidized	configs for	errors	/	ommissions

Vendor	agnostic!

IXP	Manager
V4

IXP Manager V4

Major	version	changes	usually	mean	major	changes
– This	is	true	here	->	but	mainly	on	the	backend

IXP	Manager	is	your	typical	MVC	stack
– We’re	completely	changing	two	elements	of	this:

• The	controller
• The	view

IXP Manager V4 – Doctrine ORM

Let’s	talk	about	the	model	first:	the	database
Layer	between	MySQL/MariaDBand	the	PHP	application	is	Doctrine	
ORM
V3	of	IXP	Manager	changed	from	Doctrine	1.2	to	Doctrine	2
– Active	model	to	ORM	(Object	Relational	Mapping)

An	example:

IXP Manager V4 – Doctrine ORM

<?php
$c = new Entities\Customer;
$c->setName("Big ISP Ltd");
$c->setAutsys(64496);
// ...
D2EM::persist($c);

IXP Manager V4 – Doctrine ORM

$custRepo
= D2EM->getRepository(“Entities\Customer”);

$customers = $custRepo->findAll();

foreach($customers as $c) {
// do something

}

IXP Manager V4 – Doctrine ORM

Stable	project	– around	since	2006
It’s	actually	a	number	of	libraries	that	stack	together.	Mainly:
– Doctrine	DBAL:	Database	Abstraction	Layer
– Doctrine	ORM:	Object	Relational	Mapper/ing

http://www.doctrine-project.org/

IXP Manager V4 – Doctrine ORM

Key	concepts:
– Entities:	represent	a	single	database	row	from	a	given	table
– Proxies:	compiled entities	that	are	fully	transparent	to	your	code.	

• Allows	for	lazy	loading,	loading	incomplete	details,	etc.

– Repositories:	handles	sets	of	entities
• Most	of	our	complex	queries	are	handled	by	way	of	proxies:

IXP Manager V4 – Doctrine ORM

class Customer extends EntityRepository {
/**
* Utility function to provide a array of
* all active and current customers.
*/
public function getCurrentActive(

$asArray =false, $trafficing =false,
$externalOnly = false, $ixp = false)

{
…

}
…

}

IXP Manager V4

How	did	we	start	talking	about	Doctrine?

IXP	Manager	is	your	typical	MVC	stack
– We’re	completely	changing	two	elements	of	this:

• The	controller
• The	view

Let’s	look	at	the	view	next…

IXP Manager V4 – The View

What’s	a	view	component?	Why	do	we	have	it	/	need	it?
– Separates	logic	from	presentation
– In	larger	projects,	UI	designers	don’t	need	to	be	able	to	code	to	manage	the	

frontend
– Eradicates	spaghetti	code
– Allows	for	templating with	layouts
– Allows	for	skinning

For	years,	the	only	game	in	town	in	PHP	was	Smarty
– It’s	godawfulL It	stinks	to	high	hell.
– Okay,	that’s	pretty	harsh.	It’s	of	its’	age	and	hasn’t	moved	forward…

IXP Manager V4 – The View

Contenders	to	Smarty:
Twig
– modern	OOP	design	
– good	extensibility	
– well	supported	and	widely	used

Blade	
– the	built-in	defacto view	for	Laravel

Problem:	views	add	developer	overhead:	more	syntax,	libraries,	
functions,	etc.	to	learn	L

IXP Manager V4 – The View

PHP	Plates
– Native	PHP	templates	– no	new	syntax	to	learn
– Inspired	by	Twig
– Supports	layouts	and	inheritance	
– Easy	to	extend	with	fucntions and	extensions

– NB:	Plates	is	a	full	template	system,	not	spagetti code	by	another	name

In	reality,	IXP	Manager	v4	supports	Smarty,	Blade	and	Plates	out	of	
the	box.

IXP Manager V4 – The Controller

The	biggest	part	of	MVC	is	C	->	the	controller
Handles:
– Routing	of	requests
– Middleware	
– Input	validation
– Controllers
– Responses

Our	new	controller	is	Laravel.	Not	just	a	controller,	a	framework.

IXP Manager V4 – The Controller

Why	change	framework	at	all?
– Developer	apathy	which	leads	to:
– Stagnation	of	the	code	base
– New	or	prospective	developers	are	turned	off
– New	features	remain	unimplemented	because	there	are	better	ways
– Stay	modern	to	leverage	new	techniques	and	services

IXP Manager V4 – The Controller

The	Laravel framework provides	new	techniques	and	integrations:
– Service	provider	framework
– Events
– Queues
– Task	scheduling
– Testing
– Migrations
– Package	management

IXP Manager V4 – The Controller

We	can’t	throw	away	the	existing	code	base	though.	
Over	the	course	of	V4’s	lifetime,	we’ll	migrate	from	Zend to	Laravel
– i.e.	Zend/Smarty	will	co-exist	with	Laravel/Plates	 for	quite	some	time
– This	means	new	features	can	be	implemented	immediately	using	the	latest	

technologies
– We	don’t	need	to	disappear	for	six	months	to	rewrite	the	entire	code	base

How	will	this	be	achieved?
– An	(in)elegent solution!

IXP Manager V4 – The Controller

Laravel is	now	the	default	framework	and	routes	requests
If	a	request	hits	Laravel for	a	route	that	does	not	exist	/	is	not	
implement	in	Laravel:
– It	throws	a	404	exception

In	app/Http/Kernel.php we	catch	that	404	exception
– And	spin	up	the	Zend Framework

Zend will	then	handle	if	possible	or	throw	another	404
– (handled	as	a	page	not	found	in	Zend and	presented	to	the	user)

IXP Manager V4 – The Controller

try {
return $this->sendRequestThroughRouter($request);

} catch(\Symfony\Component\HttpKernel\Exception\NotFoundHttpException $e) {

require_once 'Zend/Application.php';

$application = new \Zend_Application(
APPLICATION_ENV, APPLICATION_PATH . '/configs/application.ini’

);

$application->bootstrap()->run();
}

IXP Manager V4 – Events and Queues

Events	provide	a	simple	observer	implementation
– You	can	subscribe	and	listen	for	events	in	packages	/	extentions!
– Events	can	be	fired when	something	significant happens
– Event	listeners	can	queue	the	event	for	offline	processing

Laravel queues	support	Beanstalkd,	IronMQ,	Amazon	SQS,	Redis and	
synchronous	(local,	immediate)

What	kind	of	things	can	we	do	with	this..?

IXP Manager V4 – Events and Queues

Physical	interface	changed	in	IXP	Manager:	fire	physIntChangedEvent
– MRTG	listener	can	check	for	port	or	port	speed	change	and	regenerate	MRTG	

configuration	and	reload	the	daemon
– Billing	notifications	listener	can	check	for	speed	change	and	email	accounts for	

billing	purposes
– Switch	configuration	listener	can	roll	out	configuration	change	to	switch	(fires	event)

• Physical	interface	status	listener	can	inspect	interface	for	matching	speed	/	
duplex

– Patch	panel	listener	could	take	some action	if	a	port	is	changed	that	has	a	connected	
cross	connect

IXP Manager V4 – Events and Queues

VLAN	interface	changed	in	IXP	Manager:	fire	vlanIntChangedEvent
– AS112	listener	can	(de)configure	BGP	session	as	necessary
– Route	collector	can	(de) configure	BGP	session	as	necessary
– Route	servers	can	(de)	configure	BGP	session	as	necessary
– Other	event	listeners	may	include:	regenerating	Smokeping&	Nagios configurations,	

DNS	PTR	entries.
– Enabling	IPv6	could	additionally	send	email	with	details	or	start	the	IPv6	enable	

process	to	walk	the	customer	through	configurating sessions	to	route	collector,	
servers,	as112,	etc.

IXP Manager V4 – Service Providers

Central	piece	of	Larabel’s application	bootstrapping
Registers:
– Controllers	and	routes
– Event	listeners
– Middleware

Can	be	used	to	extend	IXP	Manager	without	hacking	the	main	
codebase

IXP Manager V4 – Contracts

Interfaces	that	define	core	services	provided	by	Laravel
Also	how	we	will	develop	extensions	to	IXP	Manager
– Design	a	contract
– Develop	reference	implementation(s)	to	that	contract

Example:	Helpdesk	integration
– First	a	bit	of	history….

New Helpdesk - operations@inex.ie

Up to 2008 - Shared IMAP Mailbox
2009 - Cerberus

Served us well but extreme feature creep
2013 - Realisation that we need something new

Helpdesk research => maximum pain

From an INEX Members’ Update

New Helpdesk - operations@inex.ie
From an INEX Members’ Update

New Helpdesk - operations@inex.ie

Up to 2008 - Shared IMAP Mailbox
2009 - Cerberus

Server us well but extreme feature creep
2013 - Realisation that we need something new

Helpdesk research => maximum pain
Pain so great, we stuck with what we had

2015 - Try again, new methodology => pain killerz

From an INEX Members’ Update

New Helpdesk - operations@inex.ie
From an INEX Members’ Update

New Helpdesk - operations@inex.ie

Candidates included:
Freshdesk, GrooveHQ, Zendesk, Kayako, Cerb5 and many more…

Contrary to my initial preconceptions, the winner was Zendesk
Excellent API (essential as we needed to import old tickets)
Easily configurable triggers and automations
Supports markdown
Nice UI plus iOS / Android apps
Poor reporting (@ Zendesk Regular anyway

From an INEX Members’ Update

IXP Manager V4 – Helpdesk Integration

Need	to	be	able	to:
– Create	customers	(organisations)	on	the	helpdesk	system
– Create	users	on	the	helpdesk	system
– Find	tickets	by	organisation
– Create	tickets
– Update	/	close	tickets

It’s	work	in	progress	but	most	of	the	integration	is	done

IXP Manager V4 – Helpdesk Integration

Contract:	app/Contracts/Helpdesk.php
– ticketsFindAll()
– organisationNeedsUpdating($custLocal,	$custHelpdesk)
– organisationCreate($cust)
– organisationUpdate($helpdeskId,	$customer)
– organisationFind($id)
– contactNeedsUpdating(…)
– userCreate()
– userUpdate()
– …

IXP Manager V4 – Helpdesk Integration

Zendesk Reference	Implementation
– app/Services/Helpdesk/Zendesk.php

Service	Provider
– app/Providers/HelpdeskServiceProvider.php
– This	file	needs	updating	for	new	implementations

Instantiation:
– $helpdesk	=	App::make('IXP\Contracts\Helpdesk');

Configuration:
– config/helpdesk.php
– Environment	configuration	via	PHP	DotEnv

IXP Manager V4 – Helpdesk Integration

Sample	.env for	Zendesk:

HELPDESK_BACKEND=zendesk
HELPDESK_ZENDESK_SUBDOMAIN=ixp
HELPDESK_ZENDESK_TOKEN=yyy
HELPDESK_ZENDESK_EMAIL=john.doe@example.com

IXP Manager V4 – Statistics Backend

IXP	Manager	currently	only	supports	MRTG/log	for	port	stats
From	earlier,	we	also	want	to	support	port	stats	via	sflow /	p2p
– Would	also	like	to	support	MRTG/rrd

DE-CIX	have	offered	a	bounty	for	this	work
Will	be	implemented	in	the	same	way	as	the	helpdesk
– i.e.	any	backend	could	be	substitued once	it	is	implemented	against	the	

provided	contract

Three	reference	implementations:	sflow/p2p,	MRTG/log,	MRTG/rrd

IXP Manager V4 – Installation Changes

The	PHP	development	tool	chain	has	changed	since	v3
– Git	submodules no	longer	necessary

PHP	has	a	package	management	system	called	composer
– All	third	party	dependancies now	installed	via	composer
– Includes:	ZF1,	Laravel,	Smarty,	Plates,	Zendesk API,	Doctrine,	etc.

Frontend	assets	handled	similarly	via	bower
– Includes	jquery,	Bootstrap,	etc.

IXP Manager V4 – Vagrant

IXP Manager V4 – Vagrant

IXP Manager V4 – Vagrant

1. Install	Vagrant	(http://www.vagrantup.com/)
2. Install	VirtualBox (http://www.virtualbox.org/)
3. Clone	IXP	Manager,	check	out	v4	and	install	dependancies:

git clone https://github.com/inex/IXP-Manager.git ixpmanager
cd ixpmanager
git checkout v4

composer update

IXP Manager V4 – Vagrant

4. Start-up	Vagrant:			vagrant up
5. This	will	take	a	while	– it	executes	bootstrap.sh which	will:

– apt-get	update,	upgrade	and	install	all	dependancies for	IXP	Manager’s	LAMP	
environment

– Configure	MySQL	and	phpMyAdmin
– Install	composer	and	bower
– Configure	and	populate	the	IXP	Manager	database	with	sample	data
– Configure	Apache	and	IXP	Manager

IXP Manager V4 – Vagrant

6. Once	it’s	complete,	you	can:
– Access	IXP	Manager	at:	http://localhost:8088/

• Admin	username	and	password:	vagrant	/	vagrant1
– SSH	into	the	virtual	machine	with:		vagrant ssh
– Your	ixpmanager directory	is	mounted	under	/vagrant
– MySQL	is	available	via:	mysql –u	root	–ppassword ixp

• Or	http://localhost:8088/phpmyadmin

IXP Manager V4 – Vagrant

Managing	your	VM:
– Shutdown	cleanly	by	logging	in	and:	 sudo shutdown –h now
– To	suspend:	 vagrant suspend
– To	force	shutdown:	 vagrant halt
– To	bring	up:	 vagrant up
– For	status:	 vagrant status

IXP Manager V4 – Documentation

Remember:	v4	is	a	bridging	version	from	ZF1	to	Laravel
As	such,	documentation	is	also	a	halfway	house
Existing	documentation	available	at:
– https://github.com/inex/IXP-Manager/wiki

New	documentation	will	be:
– https://ixp-manager.readthedocs.org/en/latest/
– Source:	https://github.com/inex/ixp-manager-docs

IXP Manager V4 – My Tool Stack

Apple	OSX	with	Homebrew	for:
– php,	bash,	bgpq3,	git,	joe,	mariadb,	node,	sshfs and	much	more

Atom	as	a	text	editor
– With	language-php,	linter	(same	for	CSS,	JS,	etc)	and	Dash

Vagrant	(latest	Ubuntu	LTS)
Git,	GitHub,	TravisCI
Skipper	(ORM	GUI,	http://www.skipper18.com/)

Quick	Coding	Example?

Quick Coding Example

Let’s	make	a	new	Artisan	command
– Artisan	is	the	CLI	component	of	Laravel

./artisan make:console DemoListCustomers

Quick Coding Example

Now	let’s	edit	the	resultant	file:
– app/Console/Commands/DemoListCustomers.php

Give	the	command	a	name	and	description
And	let’s	see	if	it	works…

Quick Coding Example

And	let’s	see	if	it	works…	nope	L

Extending	the	wrong	class	– need	to	use	and	extend:
– use	IXP\Console\Commands\Command	as	IXPCommand;
– =>	class	DemoListCustomers extends	IXPCommand {

No	options	/	arguments	required
Need	to	register	the	command	in	app/Console/Kernel:
– protected	$commands	=	[…]

Now	it	works!	But	does	nothing...

Quick Coding Example

Let’s	get	and	list	all	customers:
Complete	the	fire()	method:

$customers =
\D2EM::getRepository('Entities\Customer')->getCurrentActive();

foreach($customers as $c)
$this->info($c->getName());

Thanks for listening!

operations@inex.ie

https://github.com/inex/IXP-Manager

Mailing list:
https://www.inex.ie/mailman/listinfo/ixpmanager

